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ABSTRACT
Student-teacher learning or knowledge distillation (KD)

has been previously used to address data scarcity issue for
training of speech recognition (ASR) systems. However, a
limitation of KD training is that the student model classes
must be a proper or improper subset of the teacher model
classes. It prevents distillation from even acoustically similar
languages if the character sets are not same. In this work, the
aforementioned limitation is addressed by proposing a MUl-
tilingual Student-Teacher (MUST) learning which exploits a
posteriors mapping approach. A pre-trained mapping model
is used to map posteriors from a teacher language to the stu-
dent language ASR. These mapped posteriors are used as soft
labels for KD learning. Various teacher ensemble schemes
are experimented to train an ASR model for low-resource lan-
guages. A model trained with MUST learning reduces rela-
tive character error rate (CER) up to 9.5% in comparison with
a baseline monolingual ASR.

Index Terms— multilingual, knowledge distillation, au-
tomatic speech recognition, low-resource languages

1. INTRODUCTION

State-of-the-art automatic speech recognition models nowa-
days require huge amounts of data for training. However,
only 23 out of 7000 language are spoken by more than half
of the world’s population [1]. Thus a large number of lan-
guages lack enough data resources to train a modern ASR
system. Multilingual and cross-lingual systems have got a
lot of attention in recent years to exploit resources of other
languages to overcome the data scarcity issue for training of
speech technologies for low-resource languages [2, 3, 4, 5].
Although multilingual ASR systems are considered to per-
form better when compared with their monolingual counter-
parts of low-resource languages, the performance of these
systems often degrades due to mixing of unrelated languages
[6, 7, 8]. This has given rise to various studies with an aim
to improve a monolingual ASR using multilingual or cross-
lingual resources rather than training a unified model [9, 10,
11]. Recently, some efforts have been made towards multi-
lingual knowledge distillation where multilingual models are
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used for knowledge distillation to train a language-specific
student ASR model [12].

Student-teacher training or knowledge distillation (KD)
[13] has widely been used to distil the knowledge from ei-
ther a single or multiple teacher models [14] to train a stu-
dent model. This technique of transferring a teacher’s knowl-
edge to a student model either at output layer [13] or at in-
termediate stages [15] has been used for many tasks such as
model compression [14, 16] and domain generalisation [17,
18, 19]. The student model is trained with a combined objec-
tive of minimising the KL-divergence loss for prediction of
the teacher’s posteriors (soft labels) and a classification loss
with the original training labels (hard labels).

Since KL-divergence loss is used as KD loss between a
teacher’s soft labels and the student model posteriors [13],
the output classes of student model must be a subset of the
teacher model. Studies on multilingual knowledge distilla-
tion have used teacher models where student model output
classes are an improper subset of the teacher model classes
[12]. Nevertheless, it still constrains a teacher model to cover
all the student classes yet a lot of languages have diverse char-
acter sets and writing scripts. As it happens, a number of
languages which are acoustically similar or belong to same
language families are written in different scripts such as Turk-
ish and Kazakh (Turkic), Urdu and Hindi (Indo-Aryan), and
Greek and Armenian (Indo-European). It prevents various
languages to distil their knowledge for training of a closer
language ASR model. Though a lot of previous works have
explored knowledge distillation for domains where student
and teachers are from same language and have same output
classes, to the best of authors knowledge no work has been
done for either cross-lingual knowledge distillation or to over-
come the aforementioned problem. This paper presents a step
towards overcoming the obstacle for applying KD in cross-
lingual settings.

To that end, a posteriors mapping technique is exploited
here which has recently been proposed with an objective to
analyse the cross-lingual acoustic-phonetic similarities [20].
A mapping model has been trained to map posteriors from
a source language ASR to those of a target language ASR
given a target language speech utterance. The work has been
employed for multilingual and cross-lingual model fusion for
speech recognition on phonemes level [21] and end-to-end



ASR systems [22]. In this work, we make use of a source
(teacher) language ASR model followed by a source-target
(teacher-student) mapping model to act as a teacher for stu-
dent model training. Source and target are synonymously
used as teacher and student respectively for rest of the pa-
per. For N languages, one mapping model is trained for
each target language to map posteriors from other N − 1
source languages ASR models to the posteriors of the tar-
get language ASR. Posteriors from ASR model of a source
language followed by the target language mapping model are
used as soft labels for knowledge distillation. Having mul-
tiple teachers from N − 1 source languages, different exist-
ing weighting schemes along with a proposed self-adaptive
weighting (SAW) are experimented for teachers ensemble to
generate soft-labels. The key contribution of MUST learn-
ing is to overcome the limitation of multilingual KD and use
teachers from diverse languages for multilingual knowledge
distillation. ASR models trained with MUST learning for low
resource languages yield a gain of up to 9.5% in terms of rel-
ative character error rate (CER).

2. MAPPING MODELS

Let the monolingual acoustic models of the target lan-
guage (MA) and the ith source language (MSi

), a mapping
model NSiA is trained to map posteriors from MSi

(PSi

of dimension dSi
) to the posteriors of MA (PSiA of di-

mension dA). Given a set of target language observations
X = {x1, x2, . . . , xT }, posterior distributions from the target
and the ith source acoustic models (PZ = {pZ1 , pZ2 , . . . , pZT }
where Z ∈ {A,Si}) are attained. A sequence-to-sequence
mapping model is trained to map posteriors from ith source
acoustic model (PSi ) to the target language posteriors (PSiA)
using the KL-divergence loss as follows;

LSiA(θ) =

B∑
n=1

pAn · (log pAn − log pSiA
n ) (1)

where B is the number of frames in one batch for training of
a mapping model.

Mapping models are trained to learn the mappings be-
tween posterior distributions from a source language and the
target language ASR given a target language utterance. An
underlying assumption is that these mapping models are able
to learn some language-related relationships between poste-
rior distributions of a source and the target language acoustic
models.

Multi Encoder Single Decoder (MESD) architecture, as
proposed in [22] and shown in Figure 1, is used for all the
mapping models. A single MESD model is trained for each
target language which consists of multiple encoders (same as
number of source languages) and a single decoder with a lan-
guage switch in-between.

For training of the MESD mapping model, outputs from
all the source acoustic models (PSi ) for a given utterance

Fig. 1. Architecture of the MESD mapping model [22]

u, are fed to source-language dependent encoders succes-
sively. Embeddings from the final layer of the encoders are
then passed to a single target-language dependent decoder.
Target posteriors (PA) are generated by decoding utterance
u through the target-language ASR. KL loss (Equation 1)
is calculated between target posteriors (PA) and the output
of mapping model decoder (PSiA). Mapping model loss is
calculated as the mean of the losses of all encoder-decoder
pairs.

LA(θ) =
∑
K

wk · LSkA (2)

where K is the number of the source languages (N−1). In the
case of mean average, wk is given as wk = 1

K . LSkA is given
in Equation 1 where each frame serves as a training example.
It enables the mapping models to converge in low-resource
setting as a small amount of data provides millions of training
examples. Since the average loss of all encoder-decoder pairs
for a mapping model causes unbalanced training across lan-
guages, rank sum dynamic weighting scheme [23] is applied
to weight the losses for each encoder-decoder loss. In this
scheme, the weights are assigned based on their normalised
ranks. w in Equation 2 then becomes

wr =
2(K + 1− r)

K(K + 1)
(3)

where r is rank of the language when the source languages are
sorted in descending order of their losses. It restricts model
from biasing towards a specific language or a group of lan-
guages.

Though a mapping model contains multiple encoders,
any encoder can be used with decoder during decoding and
MESD does not require data stream from all the encoders for
a given utterance. It implies that mappings can be obtained



having input even from only one source language at a time.
Training of these mapping models allows to use any source
language ASR for decoding the data of a target language
followed by the source-target mapping model.

3. MULTILINGUAL STUDENT-TEACHER (MUST)
LEARNING

As described in the Section 1, output classes of the student
model are required to be a proper or improper subset of the
teacher model classes for knowledge distillation. It prevents
a teacher language to distil its knowledge to train a student
model if writing scripts or character sets are not the same. In
this work, mapping models are employed to overcome this
issue and distil knowledge from diverse teacher languages to
train a student model of a low-resource language.

For a given target language (Ltgt), an encoder-decoder
sequence-to-sequence monolingual acoustic model is trained
using hybrid CTC loss as given in Equation 4.

LASR(θ) = αLCTC + (1− α)Lseq (4)

where LCTC is applied on top of the encoder after an affine
projection layer. Lseq is cross-entropy loss which is applied
on the decoder’s output.

For MUST learning, soft-labels from a single teacher
or an ensemble of multiple teacher models are used to dis-
til knowledge for the training of a model for low-resource
language. Lseq loss in Equation 4 is modified as

Lseq(θ) = λLKD + (1− λ)L′
seq (5)

where L′
seq is still cross-entropy loss and LKD is the knowl-

edge distillation loss which is ensemble of multiple teachers
and given as

LKD =
∑
K

WkLTk
(6)

LTk
is KL-divergence loss between posteriors from kth

teacher model and the student model.

LTk
=

∑
B

pTk log
ps

pTk
(7)

where pTk and ps are the posterior distributions from kth

teacher and the student model respectively. A teacher model
is a source language ASR model followed by a target lan-
guage mapping model NA as shown in Figure 2. α and λ in
Equations 4 and 5 are hyper-parameters and different teacher
weighting strategies are experimented for W in Equation 6.

Given an utterance u of a target language, it is decoded
through all the source language ASR systems (MSi

) which
generate posteriors for their output classes (PSi ). Then a
pre-trained target language mapping model (NA) is used to
map the output posteriors from source language ASR sys-
tems to the target language ASR (PSiA). Output posteriors

from the mapping model are used as soft targets for student
model training. So, ASR of each source language along with
a target language mapping model act as a teacher model for
MUST learning. For the target language student learning, ex-
periments are conducted using an ensemble of multiple teach-
ers (source languages) and a single teacher to generate soft
labels for KD training.

3.1. Self-adaptive weighting
Performance of the ensemble teacher models depends on
the choice of W in the Equation 6 for each teacher loss. A
straightforward approach is the teacher-averaging (TA) where
all the teachers are assigned equal weights. However, all the
teachers have different relationships with the student task and
thus impact differently. In case of multilingual systems, all
teacher languages are not equally similar and assigning the
equal weights does not prove to be an optimal way.

In this work, a self-adaptive weighting (SAW) scheme
is proposed. Motivated by a recent work which makes use
of posterior distributions [24], teacher models get relative
weights based on their confidence in soft-labels. Furthermore,
rather than assigning the same weights for a batch, teachers
weights are calculated on-the-fly for each utterance. Given an
utterance u of T frames, mean of max(pt)∀t ∈ {1, 2, · · · , T}
is calculated where pt is the posterior distribution at time t.

µk =
1

T

∑
t

max(pTk
t )

Then the weight of each teacher is set to

Wk =
τµk∑
K τµk

(8)

where
∑

K W = 1 and τ is a hyper-parameter for the sake of
statistically significant weights distribution across the teach-
ers. Increasing the value of τ increases the deviation of the
teachers weights from the mean weight.

4. EXPERIMENTAL SETUP
4.1. Data set
In this work, all the experiments are conducted using the same
data sets as in the previous work on mapping models [21].

Fig. 2. Architecture of Multilingual Student-Teacher (MUST)
learning



Table 1. Details of BABEL data sets used for the experimen-
tation

Lang Train Eval
# hours # spks # hours # spks

Tamil (tam) 59.11 372 7.8 61
Telugu (tel) 32.94 243 4.97 60
Cebuano (ceb) 37.44 239 6.59 60
Javanese (jav) 41.15 242 7.96 60

Four low-resource languages (Tamil (tam), Telugu (tel), Ce-
buano (ceb) and Javanese (jav)) from the IARPA BABEL
speech corpus [25] with their Full Language Packs (FLP) are
used for ASR training and evaluation. Most of the BABEL
data sets consist of conversational telephone speech with real-
time background noises and is quite challenging because of
conversation styles, limited bandwidth, environment condi-
tions and channel. All the utterances without any speech are
discarded. The details of the data sets are given in Table 1.

For training of the mapping models, a subset of 30 hours
is randomly selected from each BABEL language pack. This
data is further split into 29 hours of train set and 1 hour of dev
set.

4.2. Student and teacher models
As described earlier, Hybrid CTC/attention architecture [26]
is used to train all speech recognition models which consists
of three modules that are; a shared encoder, an attention de-
coder and a CTC module. The training process jointly opti-
mises the weighted sum of CTC and attention model as given
in Equation 4 but Lseq is a cross-entropy loss for the training
of teacher models which implies that Lseq in Equation 4 is
same as L′

seq of Equation 5.
The input to the model are 40 filterbanks and the output of

the model is byte-pair encoded (BPE) tokens. All the models
are trained for 100 BPE tokens for each language and Sen-
tencePiece library [27] is used for tokenisation. Both student
and teacher models are of the same capacity (∼ 170.9 mil-
lion) throughout the experimentation.

During decoding, the final prediction is made based on
a weighted sum of log probabilities from both the CTC and
attention components. Given a speech input X , the final pre-
diction Ŷ is given by;

Ŷ = argmax
Y ∈Y

{γ logPCTC(Y |X) + (1− γ) logPseq(Y |X)}

(9)
where γ is a hyper-parameter.

For speech recognition task, results are reported in terms
of percent character error rate. The SpeechBrain toolkit [28]
is used for training of all ASR systems.

4.3. Mapping models
A multi encoder single decoder model is trained for each tar-
get language. In an MESD model, there are three encoders
and only one attention decoder. Each encoder and single de-
coder consists of one bidirectional RNN layer. Mapping mod-

els are also of the same capacity (∼ 2.59 millions) for all the
languages and trained on equal amounts of data.

4.3.1. Performance metric

Performance of mapping models is reported in terms of ac-
curacy. Accuracy of a mapping model is measured as the
ratio of correctly mapped frames (CMF ) to the total num-
ber of frames (TF ). Correctly mapped frames are defined
as the frames where the most probable classes from map-
ping model and the target posteriors are the same (that is
argmaxk(p

A
t,k) == argmaxk(p

SiA
t,k ) where k is the index

of a class in the output vector pt).

4.4. MUST learning
For the experimentation in this work, values of α and λ of
Equation 4 and 5 are varied between the range of [0, 1] and
the numbers are reported with the best configuration. The val-
ues of α and γ are kept constant for all the experimentation
while λ may vary for different languages. For teachers’ en-
semble, various weighting strategies are experimented to as-
sign the weights (W). Conventional teacher averaging (TA)
is compared with proposed self-adaptive weighting (SAW).
In teacher averaging, all the teachers get the equal weights
and does not change during whole training. Frame-wise max
(FWM) selects posteriors from a different teacher for each
frame of a given utterance. For each frame, the teacher hav-
ing a maximum value of posteriors among all the teachers is
selected. Recently, an elitist sampling (ES) has been proposed
and prove to outperform TA and FWM weighting strategy for
speech recognition domain generalisation task [24]. ES takes
mean of maximum posterior values of all the frames for a
given utterance. Then the soft labels of the teacher having the
highest value are used for that given utterance.

In previous work, posterior distributions from all the map-
ping models have been fused as an acoustic model which have
outperformed the monolingual acoustic models [21]. How-
ever, the fused weights have been fine-tuned for test set. An
experiment is also done here by assigning fine-tuned weights
(FTW) for the test set. These weights are manually fine-tuned
and might be a sub-optimal solution. Lastly, a comparison
is shown with using only one teacher model for knowledge
distillation rather than ensemble of all the teachers to reduce
the computational complexity. The objective is to analyse the
gap in performance by reducing the teacher models. In case
of single teacher (ST) distillation, only the teacher from the
closest language is selected. ‘Closest’ language is defined in
terms of mapping models accuracy. For a target language, the
source language with maximum mapping model accuracy is
selected as the teacher model.

5. RESULTS AND DISCUSSION

5.1. Teacher models
As described in Section 3, a teacher model for MUST learn-
ing is a combination of a teacher language ASR and a student-



Table 2. Accuracy of the pre-trained mapping models
Source
Lang.

Target/Student languages
tam tel ceb jav

tam - 48.88 60.53 62.24
tel 47.46 - 48.32 54.64
ceb 45.98 46.22 - 65.51
jav 46.97 47.40 65.04 -

teacher mapping model. Since most of the languages included
in this study have different scripts and character sets, ASR
of a language cannot be used for decoding the data of the
other one. Pre-trained mapping models are used for each
student-teacher pair in this work. Performance of the pre-
trained mapping models is tabulated in Table 2 in terms of
accuracy. For each target language, accuracy of the mapping
model is shown for all the source-target mapping modules.

5.2. MUST learning
For multilingual student-teacher learning, various teacher
ensemble strategies are explored. Before training a student
model, the ensemble strategies are applied for teacher mod-
els fusion. For a given target language, outputs from all the
teacher models are fused together in a weighted sum. CER
is calculated by applying greedy search on fused teacher out-
puts. All the discussed ensemble strategies (in Section 4.4)
including teacher averaging (TA), frame-wise max (FWM),
elitist sampling (ES), self-adaptive weighting (SAW) and
fine-tuned weights (FTW) are experimented and results are
tabulated in Table 3.

Analysis shows that the trend of student model perfor-
mance with different ensemble strategies is same as the trend
for model fusion. So, the student models here are trained us-
ing only top three best performing teachers’ ensemble tech-
niques in Table 3 which are SAW, TA and FTW. %CER of
student model are shown in Table 4. First row is the %CER
from a baseline monolingual ASR using an explicit RNNLM
trained on limited text of train set transcriptions. Although
the performance of TA and SAW is almost same for model
fusion (in Table 3), student models trained with SAW ensem-
ble reduces average CER by 1.27% relative if compared with
the models trained with TA weighting (Table 4). With the
weights fine-tuned for test set, average CER is reduced to
42.13% from 42.93% of SAW trained models which is a rela-

Table 3. MUST teachers performance in terms of %CER
MUST
teachers

Target/Student languages
tam tel ceb jav avg

ES 57.24 83.23 72.09 75.93 72.12
FWM 57.39 82.54 62.45 70.14 68.13
SAW 57.34 84.31 61.99 67.32 67.74
TA 57.38 84.31 61.98 67.26 67.73
FTW 57.34 83.36 60.03 59.45 65.04

Table 4. Performance (%CER) of student model trained using
MUST learning

MUST
teachers

Target/Student languages
tam tel ceb jav avg

mono 44.28 56.18 31.26 40.90 43.16
TA 44.72 57.02 32.43 42.61 44.20
SAW 44.59 56.14 31.87 39.11 42.93
FTW 44.42 55.79 30.80 37.50 42.13
ST 43.77 55.56 29.43 36.98 41.44

tive improvement of 2.4% compared to monolingual models.
In another experiment, knowledge from only a single

teacher model is distilled for student model training (ST in
Table 4). For each target language, the closest language is
chosen as a teacher model. As described earlier, a closest
source language for a target language is the one which has
highest mapping model accuracy for the target language. Stu-
dent models trained using the single teacher outperform all
other students for all the languages by an average improve-
ment of 4% in performance of monolingual model. For jav
target language, a relative improvement of 9.5% is observed.

Both ceb and jav yield more gains in performance than
tam and tel because the mapping models’ accuracies are
higher for these two languages. It is evident that the gain for
each language depends directly on the performance of cor-
responding mapping model. Student training with ST does
not have any test set information and performs even better
than FTW which has fine-tuned weights for the test set. The
results are inline with the performance of mapping mod-
els and the results reported for data augmentation using the
mapping models in [22]. Since some source-target mapping
models does not perform very well for some of the teacher
languages, the teacher knowledge introduces noise in student
training and makes it hard for student to learn. Knowledge
distillation from only a single student not only improves ASR
performance but also reduces the computational complexity.

6. CONCLUSION

This paper presents a multilingual student-teacher (MUST)
approach to address a limitation of knowledge distillation sys-
tems to apply in a cross-lingual settings. In MUST learning,
a teacher model is a combination of a source language ASR
followed by a source-target mapping model. Pre-trained map-
ping models are used to map posteriors from a source lan-
guage ASR to those of the target language ASR (Table 2).
Various weighting strategies are explored for teachers ensem-
ble (Table 3). Student models are trained for each language
with top performing ensemble strategies. A student model
trained with MUST learning proves to outperform baseline
monolingual ASR by a relative gain of up to 9.5%.
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